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Agenda

• Brief overview of dimensional data models

• Brief overview of star transformations

• The virtuous cycle and the death spiral• The virtuous cycle and the death spiral

• Portraying time-variant data

• The fatal flaw and how to avoid it
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Why Star Schemas?

• BI analysts generally just want a big spreadsheet
– Lots and lots of attribute and measure columns

• Attributes categorize the data

• Measures are usually additive and numeric

Dimensional data model is really just that spreadsheet

Measures are usually additive and numeric

• Dimensional data model is really just that spreadsheet
– Normalized to recursive depth of one

• Normalized entities are dimension tables
– Columns are primary key and attribute columns

• Cells in the spreadsheet are the fact table
– Columns are foreign-keys to dimensions and measures
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Why Star Transformations?
Star transformation compared 

to other join methods (NL, 
SM, HA):

• Filter result set in one of the 
dimension tables

Dim

Table 1

Dim

Table 2 dimension tables

• Join from that dimension 
table to the fact along a low-
cardinality dimension key

• Join back from fact to other 
dimensions using dimension 
PK

– Filtering rows retrieved 
along the way

• Wasteful and inefficient

Fact

table

Table 2

Dim

Table 3

Dim

Table 4
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Star Transformation steps

1. Filter WHERE clause on 

query set in each 

dimension

Dim

Table 1

Dim

Fact

table

dimension

2. Merge result set from 

all dimensions

3. Join to the fact from 

merged result set, using 

BITMAP MERGE index 

scan

Dim

Table 2

Dim

Table 3

Dim

Table 4
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Star Transformation steps

Dim

Table 1

Dim

4. Join back to dimension 

tables for items in SELECT 

clauseDim

Table 2

Dim

Table 3

Dim

Table 4

clause
Fact

table
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Star Transformation reality

• We need star transformations for optimal query performance in 
the data warehouse.

– But the mechanism of star transformation requires single-column – But the mechanism of star transformation requires single-column 
bitmap indexes on dimension-key columns

– But bitmap indexes negatively impact data manipulation 
dramatically

• Does this mean that Oracle database cannot handle large-
volume data warehouses?
– Is star transformation just for demonstration?
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Data warehousing reality

• We have to recognize how these features for large 

data volumes and optimal queries work together

– Partitioning – Bitmap indexes– Partitioning

– Direct-path loading

– Compression

– Star transformation

– Bitmap indexes

– Bitmap-join indexes

– READ ONLY tablespaces

– Information lifecycle 

management

• Because it really isn’t documented anywhere
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The Virtuous Cycle
• Non-volatile time-variant data implies…

– Data warehouses are INSERT only

• Insert-only data warehouses implies…
– Tables and indexes range-partitioned by a DATE column

• Tables range-partitioned by DATE enables…
– Data loading using EXCHANGE PARTITION load technique– Data loading using EXCHANGE PARTITION load technique

– Partitions organized into time-variant tablespaces

– Incremental statistics gathering and summarization

• Data loading using EXCHANGE PARTITION enables…
– Direct-path (a.k.a. append) inserts

– Data purging using DROP/TRUNCATE PARTITION instead of DELETE

– Bitmap indexes and bitmap-join indexes

– Elimination of ETL “load window” and 24x7 availability for queries
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• Direct-path (a.k.a. append) inserts enable…
– Load more data, faster, more efficiently

– Optional NOLOGGING on inserts

– Basic table compression (9i) or HCC (11gR2) for Oracle storage

– Eliminates contention in Oracle Buffer Cache during data loading

• Optional NOLOGGING inserts enable…

The Virtuous Cycle

• Optional NOLOGGING inserts enable…

– Option to generate less redo during data loads

– Optimization of backups

• Table compression enables…

– Less space consumed for tables and indexes

– Fewer I/O operations during queries

• Partitions organized into time-variant tablespaces enable…

– READ ONLY tablespaces for older, less-volatile data
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The Virtuous Cycle
• READ ONLY tablespaces for older less-volatile data enables…

– Tiered storage

– Backup efficiencies

• Data purging using DROP/TRUNCATE PARTITION enables…

– Faster more efficient data purging than using DELETE statements– Faster more efficient data purging than using DELETE statements

• Bitmap indexes enable…

– Star transformations

• Star transformations enable…

– Optimal query-execution plan for dimensional data models

– Bitmap-join indexes

• Bitmap-join indexes enable…

– Further optimization of star transformations
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The Death Spiral

• ETL using “conventional-path” INSERT, UPDATE, and DELETE operations

• Conventional-path operations work well in transaction environments

– High-volume data loads in bulk are problematic

– High parallelism causes contention in Shared Pool, Buffer Cache– High parallelism causes contention in Shared Pool, Buffer Cache

• Mixing of queries and loads simultaneously on table  and indexes

• Periodic rebuilds/reorgs of tables if deletions occur

• Full redo and undo generation for all inserts, updates, and deletes

– Bitmap indexes and bitmap-join indexes

• Modifying bitmap indexes is slow, SLOW, SLOW

• Unavoidable locking issues in during parallel operations
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The Death Spiral
• ETL dominates the workload in the database

– Queries will consist mainly of “dumps” or extracts to downstream systems

– Query performance worsens as tables/indexes grow larger

– Stats gathering takes longer, smaller samples worsen query performance

– Contention between queries and ETL become evident– Contention between queries and ETL become evident

– Uptime impacted as bitmap indexes must be dropped/rebuilt

• Backups consume more and more time and resources

– Entire database must be backed up regularly

– Data cannot be “right-sized” to storage options according to IOPS, so 
storage becomes non-uniform and patchwork, newer less-expensive 
storage is integrated amongst older high-quality storage, failure points 
proliferate
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So what do we do?

• Fact tables
– Range-partition by date to aid ETL

• Optional:  sub-partition by range, list, or hash to aid queries

• Dimension tables• Dimension tables
– Static dimensions

• Optional: partition or sub-partition to aid queries

– Slowly-changing dimensions
• Range-partition by date to aid ETL

– Optional: sub-partition by range, list, or hash to aid queries
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Fact tables

• Dimension key columns
– Foreign keys to dimension tables

• Combination of all dimension keys represents uniqueness

– Each key indexed using single-column bitmap indexes– Each key indexed using single-column bitmap indexes

• Degenerate dimension columns
– Status, type, load date, etc

• Measure columns
– Additive and numeric for aggregation
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Dimension tables

• Primary key columns
– Static dimensions

• A single-column, numeric surrogate key

• For example:  geography, products, materials• For example:  geography, products, materials

– Slowly-changing dimensions
• A surrogate key plus a timestamp for effective date

• Examples:  people, currencies

– Enforced with unique index

• Attribute columns
– Searching, filtering, categorizing/descriptive
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Slowly-changing dimensions

• New versions of data are added frequently
– Rows with new version of data are inserted

– Example:  an account dimension
ACCT_KEY column uniquely identifies a credit-card account…ACCT_KEY column uniquely identifies a credit-card account…

…but there might be multiple rows in the dimension table for each ACCT_KEY 
value

• Slowly-changing dimension must contain timestamp
– Effective date

• Queries must join fact rows to the appropriate version of dimension
– Example:  it doesn’t make sense to associate today’s credit card 

transactions with personal and demographic data from 30 years ago, 
even for the same person
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Slowly-changing dimensions

• But there are situations when the current point-
in-time data is needed efficiently

– During data loading– During data loading

• Appropriate dimension key value must be assigned to new 
fact rows

– Appropriate dimension key is latest row

– What is the most-efficient way to identify the current 
point-in-time rows?
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Identifying current point-in-time

• CURRENT_FLAG column?
– Set to TRUE when inserted

• Set to FALSE when newer version inserted

• EXP_DT column?• EXP_DT column?
– Set to NULL (or 12/31/9999) when inserted

• Set to SYSDATE when newer version inserted

• EFF_DT column?
– Set to SYSDATE on insert

• Never modified when newer version inserted

• Queries must seek MAX(EFF_DT) for each PERSON_KEY
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Here is why…

• Bulk UPDATE processing to set CURRENT_FLAG = 
FALSE or EXP_DT = SYSDATE initiates the death 
spiral
– Conventional SQL operations– Conventional SQL operations

– No partitions can be set READ ONLY

– No partitions will remain compressed

– …and so on…

This is the fatal flaw
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Here is how to avoid it
• Each slowly-changing dimension is implemented as two tables

– One with all versions of data (history)
• Type-2 (after-change image): time-variant  or…

• Type-3 (before- and after-change): time-variant

– One with only current point-in-time (non-historical)– One with only current point-in-time (non-historical)
• Type-1, point-in-time, just the latest

• Each load cycle
– Insert new data into time-variant table first

– Rebuild point-in-time table

• Anywhere you need to do MERGE logic in bulk, please think of this 
example



HrOUGHrOUG

Basic 5-step technique
• The basic technique of bulk-loading new data into a “scratch” table, which is then 

indexed, analyzed, and finally “published” using the EXCHANGE PARTITION operation

– This should be the default load technique for all large tables in a data warehouse

• Assumptions for this example:• Assumptions for this example:

– A “type 2” time-variant composite-partitioned slowly-changing dimension table named 

ACCT_DIM

• Range partitioned on DATE column EFF_DT

• Hash sub-partitioned on NUMBER column ACCT_KEY

– 25-Feb 2014 data to be loaded into “scratch” table named ACCT_SCRATCH

– Ultimately data to be published into partition P20140225 on ACCT
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Range-hash

composite-partitioned

ACCT_DIM

Hash-partitioned

ACCT_SCRATCH
2. Bulk

Loads

Basic 5-step technique 1. Create

ScratchTable

22-Feb

2014

23-Feb

2014

24-Feb

2014

(empty) 25-Feb

2014

3. Table &

Col Stats

4. Index

Creates

5. Exchange

Partition
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Range-hash

composite-partitioned

ACCT

Basic 5-step technique

2. Bulk

Loads

1. Create

ScratchTable

Exchange

Hash-partitioned

ACCT_SCRATCH

22-Feb

2014

23-Feb

2014

24-Feb

2014

(empty)25-Feb

2014

3. Table &

Col Stats

4. Index

Creates

5. Exchange

Partition

Exchange

Partition
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Basic 5-step technique

1. Create temporary table ACCT_SCRATCH as a hash-partitioned table

• Must match structure of target partition

2. Perform parallel, append load of data into ACCT_SCRATCH

3. Gather CBO statistics on table ACCT_SCRATCH3. Gather CBO statistics on table ACCT_SCRATCH

• Only table and columns stats

4. Create indexes on ACCT_SCRATCH matching local indexes on 
ACCT_DIM

5. alter table ACCT_DIM

exchange partition P20140225 with table ACCT_SCRATCH

including indexes without validation update global indexes;
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Basic 5-step technique
• It is a good idea to encapsulate this logic inside PL/SQL packaged- or stored-

procedures:

SQL> exec exchpart.prepare(‘ACCT_DIM’,’ACCT_SCRATCH’,’25-FEB-2014’);

SQL> alter session enable parallel dml;

SQL> insert /*+ append parallel(n, 16) */ into acct_scratch n

3  select /*+ full(x) parallel(x, 16) */ *3  select /*+ full(x) parallel(x, 16) */ *

4  from   ext_stage x

5  where  x.load_date >= ‘25-FEB-2014’

6  and    x.load_date < ‘26-FEB-2014’;

SQL> commit;

SQL> exec exchpart.finish(‘ACCT_DIM’,’ACCT_SCRATCH’);

• DDL for EXCHPART package posted at http://www.EvDBT.com/tools.htm#exchpart
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Loading the slowly-changing dimension

We could load it this way…

merge into curr_acct_dimmerge into curr_acct_dim

using (select * from acct_dim

where eff_dt >= ‘25-FEB-2014’

and   eff_dt <  ‘26-FEB-2014’)

when matched then update set ...

when not matched then insert ...;
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Loading the slowly-changing dimension

…or we could load it this way instead

1. Create temporary table ACCT_SCRATCH as a hash-partitioned table

2. Perform parallel, append load of data into ACCT_SCRATCH2. Perform parallel, append load of data into ACCT_SCRATCH
• Nested in-line SELECT statements doing UNION, ranking, and filtering

3. Gather CBO statistics on table ACCT_SCRATCH

4. Create indexes on ACCT_SCRATCH matching local indexes on 
CURR_ACCT_DIM

5. alter table CURR_ACCT_DIM
exchange partition PDUMMY with table ACCT_SCRATCH

including indexes without validation;
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Range-hash composite-partitioned

table ACCT_DIM (type-2 dimension)

Range-hash composite-partitioned

table CURR_ACCT_DIM

(type-1 dimension)

Hash-partitioned table

ACCT_SCRATCH

Loading the slowly-changing dimension

23-Feb

2014

24-Feb

2014

25-Feb

2014

Union/filter operation
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CURR_ACCT_DIM
• Range-hash composite-

partitioned

• Range partition key 

ACCT_SCRATCH
• Hash partitioned

• Hash parition key 

column same as 

Loading the slowly-changing dimension

Exchange• Range partition key 

column = PK column

• Single range partition 

named PDUMMY

• B*Tree index on PK 

(local)

• Bitmap indexes (local) 

on attributes

CURR_ACCT_DIM

• Indexes created to 

match local indexes on 

CURR_ACCT_DIM

Exchange

Partition
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Loading the slowly-changing dimension

INSERT /*+ append parallel(t,8) */ INTO ACCT_SCRATCH t

SELECT …(list of columns)…
FROM (SELECT …(list of columns)…, 

ROW_NUMBER() over (PARTITION BY acct_key

ORDER BY eff_dt desc) rn

FROM  (SELECT   …(list of columns)…FROM  (SELECT   …(list of columns)…
FROM      CURR_ACCT_DIM

UNION ALL

SELECT    …(list of columns)…
FROM       ACCT_DIM partition(P20140225)))

WHERE  RN = 1;

1. Inner-most query pulls newly-loaded data from ACCT_DIM, union with existing data from 
CURR_ACCT_DIM

2. Middle query ranks rows within each ACCT_KEY value, sorted by EFF_DT in descending order
3. Outer-most query selects only the latest row for each ACCT_KEY and passes to INSERT
4. INSERT APPEND (direct-path) and parallel, can compress rows, if desired
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Loading the slowly-changing dimension

• Assume that…
– CURR_ACCT_DIM has 15m rows total

– 1m new rows just loaded into 25-Feb partition of ACCT_DIM
• 100k (0.1m) rows are new accounts, 900k (0.9m) rows changes to existing accounts

• Then, what will happen is…• Then, what will happen is…
– Inner-most query in SELECT fetches 15m rows from CURR_ACCT_DIM unioned with 

1m rows from 25-Feb partition of ACCT_DIM, returning 16m rows in total

– Middle query in SELECT ranks rows within each ACCT_KEY by EFF_DT in descending 
order, returning 16m rows

– Outer-most query in SELECT filters to most-recent row for each ACCT_KEY, 
returning 15.1m rows

– Inserts 15.1m rows into ACCT_SCRATCH
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Summary

1. During load cycles, first load time-variant type-2 tables…

– Either using basic 5-step EXCHANGE PARTITION load technique when 

load cycles match granularity of range partitions…

– Or using 7-step EXCHANGE PARTITION load technique for “dribble 

37

– Or using 7-step EXCHANGE PARTITION load technique for “dribble 

effect” when load cycles do not match granularity of range partitions

2. …then, merge newly-loaded data from time-variant tables 

into point-in-time type-1 tables

– Using EXCHANGE PARTITION load technique to accomplish merge / 

up-sert logic faster
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Thank You!
Tim’s contact info:

– Web:  http://www.EvDBT.com

– Email: Tim@EvDBT.com

White Papers:  http://www.EvDBT.com/papers.htmWhite Papers:  http://www.EvDBT.com/papers.htm

– “Scaling to Infinity” paper by Tim Gorman

– “Supercharging Star Transformations” by Jeff Maresh

– “Managing the Data Lifecycle” by Jeff Maresh

Scripts and Tools:  http://www.EvDBT.com/tools.htm

– “exchpart.sql” package


